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(57) ABSTRACT

Multiple classifiers can be applied independently to evaluate
images or video. Where there are heavily imbalanced class
distributions, a local expert forest model for meta-level score
fusion for event detection can be used. Performance varia-
tions of classifiers in different regions of a score space can be
adapted. Multiple pairs of experts based on different parti-
tions, or “trees,” can form a “forest,” balancing local adaptiv-
ity and over-fitting. Among ensemble learning methods,
stacking with a meta-level classifier can be used to fuse an
output of multiple base-level classifiers to generate a final
score. A knowledge-transfer framework can reutilize the
base-training data for learning the meta-level classifier. By
recycling the knowledge obtained during a base-classifier-
training stage, efficient use can be made of all available infor-
mation, such as can be used to achieve better fusion and better
overall performance.
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1
SCORE FUSION AND TRAINING DATA
RECYCLING FOR VIDEO CLASSIFICATION

CLAIM OF PRIORITY

This patent application claims the benefit of priority, under
35 US.C. Section 119(e), to Liu, U.S. Provisional Patent
Application Ser. No. 61/561,721, entitled “CLASSIFIER
SCORE FUSION THROUGH A MIXTURE OF LOCAL
EXPERTS,” filed on Nov. 18, 2011, which is hereby incor-
porated by reference herein in its entirety.

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

This invention was made with government support under
award number D11PC20069 awarded by the Intelligence
Advanced Research Projects Activity (IARPA). The govern-
ment has certain rights in this invention.

BACKGROUND

In many applications, particularly in image or video
retrieval from large datasets, classifiers are commonly used to
assign a score indicating the probability that a given item
(image or video) belongs to a particular category. In one
application, classifiers are used to retrieve video clips of a
particular category, such as to automate a task otherwise
performed by an intelligent analyst. Commercial classifiers
can be used to detect abnormal behavior in airports or shop-
lifting in retail settings.

Classifiers are generally trained to assess probability given
a particular feature of the input image or input video. The
features are chosen by system designers to exploit a cue to the
underlying category. In systems that distinguish between
similar categories, more than one cue, and thus more than one
type of feature may be used.

OVERVIEW

The present inventors have recognized, among other
things, that a problem to be solved can include using classi-
fiers to assign a score to indicate a probability that a given
item (e.g., an image or video item) belongs to a particular
category. The present subject matter can help provide a solu-
tion to this problem, such as by combining information from
multiple classifiers and/or multiple feature types in order to
assess a probability given multiple cues about an underlying
category.

Multiple classifiers can be applied independently to evalu-
ate each image or video and provide a “likelihood” score.
Where there are heavily imbalanced class distributions, a
local expert forest model for meta-level score fusion for event
detection can be used. Performance variations of classifiers in
different regions of a score space can be adapted using a
divide-and-conquer technique. For example, a likelihood-
space can be partitioned while maintaining a sensitivity to
local label distributions in imbalanced data, and at least a pair
of locally optimized experts can be trained each time. Mul-
tiple pairs of experts based on different partitions (herein,
“trees”) can form a “forest,” balancing local adaptivity and
over-fitting of the model. As a result, classifiers in regions of
the score space where their performance is poor can be dis-
regarded, such as to achieve local source selection and fusion.

Among ensemble learning methods, stacking with a meta-
level classifier can be used to fuse an output of multiple
base-level classifiers to generate a final score. Labeled data is
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2

usually split for base-training and meta-training such that the
meta-level learning is not impacted by over-fitting of base
level classifiers on their training data. A knowledge-transfer
framework canreutilize the base-training data for learning the
meta-level classifier. By recycling the knowledge obtained
during the base-classifier-training stage, efficient use can be
made of all available information, such as can be used to
achieve better fusion and better overall performance.

This overview is intended to provide an overview of subject
matter of the present patent application. It is not intended to
provide an exclusive or exhaustive explanation of the inven-
tion. The detailed description is included to provide further
information about the present patent application.

BRIEF DESCRIPTION OF THE DRAWINGS

In the drawings, which are not necessarily drawn to scale,
like numerals may describe similar components in different
views. Like numerals having different letter suffixes may
represent different instances of similar components. The
drawings illustrate generally, by way of example, but not by
way of limitation, various embodiments discussed in the
present document.

FIG. 1 illustrates generally an example of a system that can
be used to extract or store several features from a video
archive, such as in a database.

FIG. 2 illustrates generally an example plot of a fusion
result.

FIG. 3A illustrates generally a plot of the performance of
two base classifiers plotted as DIET curves.

FIG. 3B illustrates generally an example that includes mul-
tiple partitions and expert pairs within a score space.

FIG. 4 illustrates generally an example of a local expert
fusion model framework.

FIGS. 5A-5D illustrate generally partitioning a score space
in the presence of imbalanced class labels.

FIG. 6A illustrates generally an example of a score distri-
bution on training data.

FIG. 6B illustrates generally an example of a score distri-
bution on test data.

FIG. 7 illustrates generally an example of a semantic-based
video retrieval system with base-training data recycling.

FIG. 8 illustrates generally a block diagram of a computer
system, such as can be configured to implement various clas-
sifier methods.

DETAILED DESCRIPTION

In the following description, reference is made to the
accompanying drawings that form a part hereof, and in which
is shown by way of illustration specific embodiments which
may be practiced. These embodiments are described in suf-
ficient detail to enable those skilled in the art to practice the
invention, and it is to be understood that other embodiments
may be utilized and that structural, logical and electrical
changes may be made without departing from the scope ofthe
present invention. The following description of example
embodiments is, therefore, not to be taken in a limited sense,
and the scope of the present invention is defined by the
appended claims.

The functions or algorithms described herein may be
implemented in software or a combination of software and
human implemented procedures in one embodiment. The
software may consist of computer executable instructions
stored on computer readable media such as memory or other
type of storage devices. Further, such functions correspond to
modules, which are software, hardware, firmware or any
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combination thereof. Multiple functions may be performed in
one or more modules as desired, and the embodiments
described are merely examples. The software may be
executed on a digital signal processor, ASIC, microprocessor,
or other type of processor operating on a computer system,
such as a personal computer, server or other computer system.

Classifier systems that distinguish between similar catego-
ries utilize more than one cue and hence multiple types of
features. For example, in order to distinguish in a video, both
“feeding an animal” and “grooming an animal”, one feature is
used to detect animal, and another feature is used to distin-
guish between feeding and grooming. In various embodi-
ments, information from multiple classifiers (and thus mul-
tiple feature types) is combined in order to assess a
probability given multiple cues.

Content-based exploitation and retrieval of digital video
from large datasets is an important topic in computer vision,
with a wide range of potential applications. Recently, with the
rapid growth of multimedia data shared on platforms such as
YouTube, some researchers have switched their focus from
recognizing simple events, such as recognizing a single per-
son waving, such as from a high-quality video (e.g., from a
static camera with a clean background) to more complicated
events that contain multiple object-interactions, such as rec-
ognizing boxing from less controlled videos (e.g., from a
hand-held camera with cluttered background).

Complex events can be detected in video clips in a large
multimedia archive (e.g., the 1000+ hour collection of about
34 k clips from the Multimedia Event Detection task of
TRECVID2011), such as in videos that are uncontrolled with
respect to camera motion, background clutter, and human
editing. Several challenges that can come with video event
detection are, among others, (1) intra-class and inter-class
variation; (2) high-dimensional features; and (3) imbalanced
labeled data.

For example, event categories can exhibit intra-class varia-
tion (e.g., variation in the presentation of a common theme,
such as different presentation of the same or different wed-
ding cakes), broad inter-class variation (e.g., variation in the
theme itself, such as presentation of wedding cakes vs. pre-
sentation of reptiles), or rich temporal structure (e.g. chang-
ing a vehicle tire or making a sandwich), such as may not be
easily estimated from a single frame. Moreover, given the
variety of real-world videos, any particular event class (e.g.
wedding ceremonies), only comprises a small portion in the
entire video database, which can result in an imbalanced
labeled data for training one-versus-all classifiers to detect
each particular event. Local expert forest for score fusion can
resolve the dilemma between local adaptivity and over fitting
from imbalanced training data.

A content-based image or video retrieval system can use
score fusion to aid in browsing multimedia archives. Score
fusion can be used for feature-based browsing, activity-based
browsing (i.e., finding video clips that show the same event
type), or the score fusion approach can be used for other
modalities such as object-based browsing. Useful systems
can incorporate a range of visual features, audio features, or
classification methods associated with the features.

Fusion of multiple cues can be done in a number of ways.
For example, in feature-level fusion, multiple features can be
combined the resulting fused feature can be classified with a
classifier trained on such data. While this is useful in certain
cases, it imposes limitations on the classifier’s configuration,
and may take a long time to train since training complexity is
proportional to the feature size. Score level fusion solves the
cue combination problem by analyzing outputs of multiple
classifiers, each of which can be trained (and subsequently
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evaluated) on the raw features. Decision level fusion involves
taking binary decisions from multiple classifiers and combin-
ing them, such as with a voting or weighting procedure.

In various embodiments, a method of score fusion is used.
One of the challenges of score fusion is handling classifiers
whose outputs are biased in different directions. For example,
classifier A may tend to assign high probabilities while clas-
sifier B may assign low probabilities. The score fusion
method can take these biases into account and, in systems
with many classifiers, identify those that have highly corre-
lated errors in order not to bias the system towards such
errors.

In an example, score fusion can use local experts. Local
experts can use a “divide-and-conquer” approach, instead of
learning one global fusion framework, to automatically learn
different fusion strategies that better adapt to local statistics of
classifier outputs. In an example, score fusion can use an
expert forest configuration. An expert forest can use multiple,
random partitions of an input space (e.g., as a tree structure),
which can be considered to form a “forest.” In this example,
the output of multiple local experts can be further fused to
generate a final output.

In an example, training data can be re-used for meta-level
classifier optimization. For example, in stacked classifier
learning, training data for base-level classifiers is not sup-
posed to be used again for the meta-level classifier because
the data can generate a biased score output. However, in cases
where training data is limited, dividing available training data
into base-training and meta-training may degrade the perfor-
mance ot both due to insufficient training data. In an example,
a method can use a normalized base-level score output from
training data in meta-level learning without bias, thus achieve
recycling (more efficient use) of the training data.

The local fusion expert model can be applied to any score-
fusion based classification problem. In a training mode, score
outputs from base-level classifiers of each labeled data
instance (e.g., video clip or image) as well as data labels (e.g.,
an association with a particular category) can be the only
system input. In this case, the present system could automati-
cally create a fusion expert forest.

FIG. 1 illustrates generally an example of a system 100 that
can be used to extract or store several features from a video
archive, such as in a database. A bank of base classifiers
follow, each of which can be trained to produce a likelihood
score based on a subset of the features. The classifier outputs
for a particular event can be fused, and the resulting fused
likelihood can be used to rank video clips, such as relative to
an operator’s interest. In an example, by including a wide
range of video and audio features, the system can be config-
ured to better handle semantically diverse events.

In some experiments described below, a single feature may
not provide sufficient performance across all event catego-
ries, but some features may be particularly suited for particu-
lar categories. For example, acoustic features can outperform
others on birthday party recognition, motion features can
outperform others on flash mob gathering recognition, and
object detection features can outperform others on recogniz-
ing a vehicle getting unstuck.

A database of rich features can be used to classify ad hoc
event categories, such as without a need to re-process the
archive clips. Having a large feature set complicates fusion,
however, because not all features may be useful with respect
to aparticular event. Therefore, the fusion system can identify
and ignore such non-discriminative features and their associ-
ated base classifiers.

Performing the fusion at the score level can abstract away
some details of the underlying classifiers, and permit use of
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different classification methods for the features to which they
are best suited. For example, score fusion can permit numeri-
cal combination of temporal models, such as on 3D features
for spatio-temporal matching with kernel methods (e.g., sup-
port vector machine, or SVM) applied to bag of word-type
features. In an example, a score fusion system can permit later
introduction of scores from classification schemes as they are
introduced. In score fusion, re-training can be indicated, such
as only when a new classifier’s output is provided.

Because each base classifier layer produces a scalar likeli-
hood value from a high-dimensional audio/video feature,
fusion in the score space can be faster than fusion at the
feature level. This advantage in training complexity can be
used to provide robustness to missing features, such as by
training multiple models for base classifier combinations that
may be given for any particular clip at evaluation time. While
a full power set may not be necessary, TRECVID clips occa-
sionally lack audio data, requiring separate fusion models for
video-only and audio and video based classifier sets. As com-
pared to voting methods for decision-level fusion, score-fu-
sion can be preferred because the output is a continuous score
(likelihood) for ranking the archive clips.

FIG. 2 illustrates generally an example plot 200 of an
actual fusion result, including detection-error-trade-off
(DET) curves. The example plot 200 can be very similar to
Receiver Operating Characteristic (ROC) curves, but with a
nonlinear scale on each ofthe axes, such as to make the curves
appear more “linear”” The DET curves of FIG. 2 illustrate
generally fusion performance (e.g., from 3 visual classifiers
and 2 audio classifiers) in detecting a birthday party. In the
example of FIG. 2, at 6% missed detections, there can be
about a 20% {false alarm probability. This is a significant
improvement over the best base classifier, which has 20%
miss at the same false alarm level, as shown.

Discriminative score fusion differs from classification or
regression problems because it can use a continuous and
semantically meaningful input (e.g., likelihood scores) with
discrete labels to produce continuous output (e.g., a fused
likelihood score) for ranking. Score fusion can be similar to
ensemble stacking, such as where separate training data are
used for base classifier- and meta-level (fusion) training.

In linear fusion, there can be limited degrees of freedom
because each base-classifier can be assigned a fixed weight-
ing. FIG. 3A illustrates generally a plot 300 of the perfor-
mance of two base classifiers plotted as DET curves. In the
example of FIG. 3A, classifier C2 has relatively better per-
formance at the upper-left region (e.g., corresponding to data
with a high likelihood score), and classifier C1 outperforms
C2 at the bottom-right region (e.g., corresponding to data
with a low likelihood score).

However, base-classifiers can be weighted differently, such
as in regions of an M-dimensional score space defined by the
outputs of M base classifiers. A mixture of local expert model
(MoE) can be a solution since it provides local flexibility, and
because non-negative linear fusion can still be performed
within each local region to provide good generalization.

An Expert Forest model can be provided, such as using a
one-layer binary partition with two local experts. A score
space can be divided in two, such as with a sensitivity to label
distributions in each cluster so that the experts have enough
data to avoid over-fitting, while still being able to adapt to
local data properties. Linear fusion can be applied with non-
negative weight constraints on local clusters, such as to pro-
vide each local model with strong generalization while allow-
ing for base classifier selection. Multiple local experts that
have overlapping regions can jointly contribute to the weight
set used such that an overall model gains a much higher
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6

degree of freedom to adapt to local properties while main-
taining good generalization ability.

FIG. 3B illustrates generally an example 310 that includes
multiple partitions and expert pairs within a score space. The
multiple expert pairs can be combined to form an expert forest
(see, e.g., the lower-right quadrant of FIG. 3B) to account for
local performance variations.

FIG. 4 illustrates generally an example of a local expert
fusion model framework 400. The framework 400 can
include multiple, 1-layer binary partition trees. In the
example of FIG. 4, an input vector comprising M base clas-
sifier scores can be fused to a single scalar output. The input’s
position, X, in the score space (illustrated generally by the
large white circle) can determine, such as for each tree, which
set of fusion weights is applied. The fused weights from each
of'the trees can be combined to general a final fused output.

In the example of FIG. 4, each of the multiple 1-layer
binary partition trees divides the score space in two, and then
handles the score spaces independently. In an example, at test
time, input score vectors can first pass through multiple
“gates” to determine which weight sets are applied to data in
the particular part of the score space. The weighted scores
from each of the trees can be combined (e.g., averaged, or
otherwise operated on) in order to generate a final fused
output.

Under the MoE model, when class labels are not balanced,
space partitioning may locally exacerbate the imbalance. This
is illustrated in the example of FIG. 5A, which shows that in
a blind K-means partition, ignoring the labels produces one
cluster containing mostly negatively-labeled data.

Unlike linear discriminant analysis (LDA) or decision
trees, which look for a separation between positive and nega-
tive labels, the present training prefers a balanced distribution
oflabels in order to prevent local over-fitting. To address this,
K-means can be applied separately to the positive (+) and
negative (-) samples, such as to partition both types of labels
into two clusters (e.g., Cl1, C2), and merge them in a later
stage (see, e.g., FIG. 5B). Given different random initializa-
tions of K-means, various partitions on both the (+) and (-)
samples can be obtained. In an example, to get random par-
tition of clusters with more diversity, K-means can be per-
formed in a random subspace without requiring full conver-
gence. In an example, if a (+) cluster and a (=) cluster spatially
overlap completely, they can be merged to form a local space
that is rich with both (+) and (-) labels. In order to evaluate the
consistency of merging a binary partition on (+) labels with a
partition on (-) labels, the idea of mutual information can be
used to indicate a spatial overlap of (+) and () clusters to be
merged.

For example, let a binary random variable ‘-+> €{c,+c,}
indicate a sample data can belong to one of the (+) clusters,
with a probability p(+=c,, )+p(+=c,, )=1. Similarly, the same
sample can also belong to either of the negative clusters with
p(==c,_)+p(-=c,_)=1. Therefore, the mutual information

between two random variables ‘+’ and ‘=’ can be given by:
pl+, -) L
I(+;-) = , =)l
e \+/e§,02+,p A

‘elep—op-)

I(+; -) can be interpreted as ‘co-occurrence’ character: given
one data sample from a particular ‘+’ cluster, it can be iden-
tified how much is known about which ‘-’ cluster it belongs
to. A higher co-occurrence can indicate a stronger overlap-
ping of the cluster areas, and can thus be preferred.
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In an example, given K different binary partitions on (+/-)
samples respectively, K* pairs of associations can be evalu-
ated according to Equation 1. Then, the top K associations can
be selected (e.g., K=20 can be selected for experimentation
purposes). For each of top ranked associations, the cluster
centerscanbeC, ,C_,,C,,and C_,. LDA can be used to find
a 1D projection vector, v, . that best separates a pair of
positive and negative cluster centers from another pair (see,
e.g., FIG. 5C). A partition of the score space can thus be
defined by the projection vector v,,,,; and a 1D threshold.

To avoid the partition becoming ill-posed again, such as in
the example of FIG. SA, v,,,,; can be fixed and, during a model
optimization stage, a threshold T can be optimized within the
range of the middle of the two projected old cluster centers
(see, e.g., FIG. 5D)). In summary, FIGS. 5A-5D illustrate
generally an example of partitioning a score space in the
presence of imbalanced class labels. In the example of FIG.
5A, K-means clustering can exacerbate an imbalance, such as
can lead to over-fitting. In the example of FIG. 5B, both
positive and negative samples can be partitioned separately.
In the example of FI1G. 5C, the partitioned positive and nega-
tive samples can be projected on a 1D axis. In the example of
FIG. 5D, a threshold T can be chosen, such as along the 1D
axis, to partition the samples.

The general mixture of expert (MoE) model is formulated

by

PY1X) =Y PEIXPY|X, E) @
E

where P(EIX) is the ‘gate’ function, indicating which model is
responsible for generating each data. The output of the gate
function directly depends on the input X, which differentiates
between MoE methods and boosting-based models.

In score fusion, a score mapping s(A)aP(Y=11X), can be
provided that can adopt the probability representation for a
maximum likelihood solution of the model parameter
0=(0®, 0™, T)x

L~[]rrix. o ©)]
X
= ]_[ [Z GO, DPY | EV(X, )
X i=L,R
where, the gate of left child as an example can be given by
G(L)(X,T):{l if X-\/\fST 4
0 otherwise

In an example, the decision in Equation (4) can be made more
easily by introducing a transition region (see, e.g., FIG. 4), so
that the fusion output will be smooth across a boundary.

Linear models can be used for local experts, such as with a
likelihood function

PNEDX w)=exp{~|Xxw®-¥} ®)

The maximum likelihood model solution of Equation (3)
cannot be solved directly because of the summation term
within the multiplication loop. Therefore, an ‘expectation’ of
the gate response and ‘maximization’ of the likelihood at
local experts can be iteratively updated. Because G only
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involves a single parameter T, once the local experts are
updated at each iteration, T can be enumerated along 1D, and
an optimal value according to Equation (3) can be obtained.

Local experts can be trained according to the following
example. In the example, Let X=(x,, . . ., X,, 1,,) be an
N-by-M+1 likelihood matrix with entry X(n, m), the score
output on clip n from base classifier m, and 1, an-by-1 vector
appended for adjusting the global offset. Ye{0, 1}” is the
binary vector of training labels, and A a diagonal matrix with
A(n, n)=G(x,), indicating the gate response on the score
vector of video clip n. A(n, n)=1/0 (or something in the
middle), indicates the video clip n is within/outside the local
region (or in the transition region).

A maximum likelihood solution for w of Equation 5 is in
the same form of the minimum mean squared error (MMSE)
representation:

w*=argmin(X*w-Y)TAX*w-Y) (6)

The regularized MMSE solution is given by o=(X7AX+AI)
1AY. Instead of A-regularization, a non-negative constraint
can be applied on all weights w,z0, I=1, . .., M. The weight
,4, 1> corresponding to the offset term, may be negative. Inan
example, when applied to a bank of base classifiers which
perform no worse than random chance, this constraint can
enforce the intuition that no such classifier should be discred-
ited by the fusion model. With this constraint, the system can
have equivalent (or even better) generalization compared to
regularization, while still behaving as a convex optimization
problem which can be solved efficiently using existing tool-
boxes. When base classifiers have random performance for a
particular event, the non-negative constraint can produce a
sparse solution (i.e., 3 is.t. w,=0). Because the scores are not
necessarily normalized across the base classifiers, the model
can include 1,, in the likelihood matrix X, and can learn an
extraweight m,,, ;. In an example, without constraining ||m||to
be a unit vector, a local fusion expert can simultaneously
adjust an offset and scale variance of each source. Exemplary
pseudo-code for training and testing of an Expert Forest
model is given in Table 1.

TABLE 1

Pseudo-code of training (top) and testing (bottom) our model.

1. Generate K random binary partitions on both the positive and
negative samples

2. Take K positive and K negative partitions to form K? pairs of
associations

3. Extract projection vectors from top K association pairs based on
Eqn.2

4. For: each projection vector v

5. Learn kth MoE model according to Equs. 4,5,6.

1. For: each MoE model k

2. estimate fused score s; according to Eqns. 3,5,6.
3. Compute the final score s = avg{s; k= 1,...K}

Experiments were performed with the TRECVID Multi-
media Event Detection (MED) dataset, including detecting
15 complicated events from around 34 k video clips compris-
ing more than 1000 hours. The experiments were performed
with M=5 base classifiers, each of which estimates event
probability based on a different multimedia feature. For
example,

C1.(visual) Motion information is captured by a bag of
words feature on 3D histograms of oriented gradients, which
is classified by an SVM with Histogram Intersection Kernel
(HIK).

C2.(visual) The relationship between events and objects is
captured using the Object Bank feature, computed using the
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reference code, and the maximum response of each detector
across the clip’s frames is classified with an SVM using HIK.

C3.(audio) Low-level audio information is captured using
Mel-Frequency Cepstral Coefficients (MFCCs), computed
using the HTK Speech Recognition Toolkit5, and an SVM
with HIK is trained using a bag of words quantization of the
MFCC features.

C4.(audio) Higher-level audio information is captured by
Acoustic Segment Models (ASM), which is classified using
an SVM with HIK.

C5.(visual) Therelationship between events and their envi-
ronments is captured using the Gist feature, which is com-
puted on a random 20 frame subset of the video, and the 20
outputs of a per-frame linear SVM are averaged to give the C5
base classifier score.

Four experiments were conducted using the fusion method
on different video events and different base classifiers on the
TRECVID2011 dataset. The experiments included (a) detect-
ing five events (E1-E5) from the fusion of four base-classifi-

5

10

15

10

ing, nonlinear-SVM, RBF network, MMSE- and MFoM-
based linear fusion, and a naive MoE fusion without
partitioning. The nonlinear-SVM and RBF network are
trained using LibSVM using a Gaussian kernel, and cross-
validation was performed to optimize both the kernel width
and the different weighting for positive and negative
instances (e.g., to handle label imbalance). The MoE model
uses 4 local experts initialized using K-means and optimized
using EM. As described above, AUC is used to evaluate the
fusion methods across a range of operating points, and a
random system will have AUC=0.5. This is performed instead
of measuring performance at a particular operating point on
the curve, which may be evaluated as the proportion of incon-
sistent score pairs, e.g. a negative clip ranked higher than a
positive clip. Such a discrete metric is equal to the normalized
Wilcoxon-Mann-Whitney ranking statistic and also similarto
the average precision.

The average AUC over the 20 runs on the 15 event catego-
ries is provided in Tables 2 and 3.

TABLE 2

Fusion performance (AUC) on event 1-5, with 4 base classifiers. For

each event, the best AUC is shown in bold.

Event Best Base Avg. SVM RBF MoE MMSE MFoM Ours

Attempting a board trick .078 075 103 .078 .060 .062 071 055

Feeding an animal 199 191 209 212 AT72 172 175 167

Landing a fish .065 084 112 .109 .082 .061 .067 055

Wedding ceremony .046 042 065 .043 055 030 .046 .035

Woodworking 124 096 .135 .089 .079 .083 .089 075
TABLE 3

Fusion performance (AUC) on events 6-15, with 5 base classifiers. For

each event, the best AUC is shown in bold.

Event Best Base Avg. SVM RBF MoE MMSE MFoM Ours
Birthday party 115 .082 .138 .089 .071 .062 .061 056
Changing a vehicle tire .144 130 106 .110 112 .089 113 087
Flash mob gathering .043 038 .076 .037 .028 .033 031 024
Getting a vehicle unstuck .105 073 115 .088 .060 058 057 050
Grooming an animal 193 209 175 159 150 153 156 .148
Making a sandwich 123 135 128 107 .106 113 101 101
Parade .072 063 127 .072 .056 055 .051 047
Parkour .070 092 135 .099 .062 .067 .065 058
Repairing an appliance .087 066 112 .057 .039 074 .040 035
Working on a sewing project 152 190 186 174 142 156 137 133

ers (all except C4); (b) detecting ten events (E6-E10) from the
fusion of all five base-classifiers; (c) a stress test to evaluate
the fusion system’s robustness by adjusting the quality of the
base-classifiers (E7); and (d) a stress test on imbalanced label
distribution. In training the score fusion for E1-E15, the
model learned on an average of 140 positive instances and
2000 negative instances per event category. For E1-E5, the
model was tested on 4292 video clips with an average 2.3% of
positive instances; for E6-E15, the model was tested on 32037
video clips with an average 0.37% of positive instances. The
experimental expert forest model uses K=20 pairs of local
experts. Bootstrapping (with replacement) is performed on
the training data 20 times, each time using the same number
of'labeled samples, and the area under the DET curve (AUC)
score is evaluated each time, where lower numbers indicate
better performance.

In an example, the results of the score fusion model can be
compared to several other methods using the same base clas-
sifier likelihoods. These other methods include score averag-
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Accordingly, the score fusion approach gives on average the
best performance.

In an example, a local expert forest model for score fusion
can be configured to exploit changes in the relative perfor-
mance of a bank of base classifiers by partitioning the score
space and learning local weight sets, such as can be used to
optimally combine scores in the resulting regions. The
method has been demonstrated on the TRECVID MED task,
fusing scores produced by 5 different base classifiers in order
to detect 15 complex events from an archive of more than
1000 hours of video. The model shows a significant perfor-
mance advantage over other fusion methods, in terms of
average AUC over 300 trial runs.

In an example, fusion weights can be determined based on
arelative performance of a base classifiers over regions of the
score space, such as without taking into consideration prop-
erties of individual clips. In addition to the output probability,
the performance of the base classifiers can correlate with
video metadata. As an example, the performance of the base
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classifier using HOG3d features can have poorer performance
on highly-compressed videos, as compared to those with
relatively less compression. In order to capture such perfor-
mance dependencies in the fusion model, clip-level metadata
can be used in weighting, such as to reduce a weight given to
the HOG3d classifier probability for highly-compressed
video. This can be achieved, for example, by expanding the
score space to include dimensions representing relevant
metadata measures and applying the above-described parti-
tioning method.

Inanexample, a solution space can be divided into multiple
local regions. At each region, alocal expert can be provided to
classify data in the corresponding local area. In an example, a
local expert can include a linear weighting of a binary (or
other) classifier. Different classifiers can be differently
weighted, such as corresponding to different regions. In an
example, an output of the local expert can include a score,
such as a probability or likelihood that a particular data item
fits within a particular classification. Multiple scores can be
fused together to provide a final determination of the prob-
ability or likelihood that the particular data item fits within a
particular classification.

In an example, a random forest algorithm can be applied to
improve classification accuracy. Stochastic or random meth-
ods can be used to divide a solution space into multiple local
regions. In an example, a solution space can be randomly
divided multiple different times, such as to obtain different
divisions of the same solution space. In this manner, the
solution space is re-sampled one or more times. In an example
where the solution space includes training data, the training
data can be partitioned and sampled multiple times, such as to
form a random forest of decision trees.

“Stacking” is a widely used ensemble method that can first
train multiple base-level classifiers and then learn a meta-
level classifier with an additional set of training data. The
training data for the base-level and meta-level classifiers can
also be referred to as held-in and held-out data, respectively.
Generally, each base-classifier generates a continuous (like-
lihood/confidence) score, which the meta-classifier then
fuses to generate a final ranking. Fundamental to stacking
methods is a need to divide the training data wisely, since
labels used for base-level training cannot be used for meta-
training without reducing performance. This is especially
problematic when training data is limited, since subsets of the
data may not sufficiently illustrate the underlying semantic
concept.

Base and meta training data can be separated because
scores on training data exhibit over-fitting, and thus do not
accurately reflect the performance of the classifier on unseen
test data. For example, FIGS. 6A and 6B illustrate generally
exemplary score distributions 600 and 601. In the example of
FIGS. 6A and 6B, a base-classifier’s output likelihood score
provides better separation of positive and negative labels on
the training data (FIG. 6A) than on unseen testing data (FIG.
6B). A better training performance can indicate over-fitting
and, consequently, poor generalization. Using training scores
to learn a meta classifier can reduce performance, such as due
to this difference in score distribution.

A more nuanced consideration of scores from training clips
can provide information that can be used to improve a fusion
model. For example, a correlation among classifiers can be
inferred in spite of over-fitting. While cross-validation can
provide similar benefits in some cases, generating balanced
partitions of the training data is complicated when the num-
bers of positive examples are very low. Base-level data can be
reused for meta-training, a scenario which can be especially
appealing in cases when an amount of labeled data is limited.
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This approach can permit use of more data for training better
base-classifiers, such as with less concern about under-train-
ing of the meta classifier.

FIG. 7 illustrates generally an example of a sematic-based
video retrieval system with base-training data recycling. In
the example of FIG. 7, training data can be split for base-
training and metatraining, and base-training data can be
‘recycled’ for metatraining.

The idea of re-using the base-training data can be inter-
preted as a knowledge-transfer process, such as where scores
output by the base-classifiers (a vector X ;of probabilities) on
training clips, together with the binary event label y, consti-
tutes the source domain D¢={Xg, ys}. The base classifier
output scores X, on unseen (meta-training) data with corre-
sponding labels y - define the target domain D,={ X, y ;}. The
score distributions can be different, e.g., P(X)=P(X,), yet D¢
contains valuable information to guide the meta-classifica-
tion problem defined in D, func(X,)—y;. Among transfer
learning approaches, a good fit can be transfer-adaboost
(TrAdaBoost), which is a generalization of AdaBoost that can
leverage source domain data with a different distribution
given limited sampling of the target domain.

In an example, the base-training-data recycling framework
can use the meta-level training data D,={X, y;} and transfer
the knowledge from base-level training data Dy {XS, Vst
For example let X =P, ..., x™ ) and X, (x( e

M) ), where M is the number of base cla551ﬁers. First, a
histogram equalization can be used to rebalance the training
score distribution according to the testing score distribution
on each base classifler, such as in FIG. 6A, such that the
source domain after marginal equalization D {XS, ys} has
the same marginal score-distribution on each base classifier:
P&, ")=P(x, ), form=1,..., M. Inan example, the positive
and negative data can be adjusted separately.

_ After histogram equalization, the joint score distribution of

X and X, can be different despite an identical marginal
distribution. In this case, the TrAdaBoost algorithm can be
used to learn a meta-level fusion classifier given both D and
Dy

For example, an M-by-1 score Vector X, can be extracted
from each data sample ie{1, . N}, such as indexing the
balanced source domain (base-tralmng) data from DS, and
i=in{ng+1, . .., ng+n,} indexing the target domain data (e.g.,
unseen meta-training data). An exemplary algorithm is pro-
vided in Algorithm 1.

Alorithm 1 TrAdaBoost for training data recycling

Input: x, ERM y. €{0,1},i=1,...,n5+ 10,
Initialize: cost vectorc; =1,i=1,...ng+ny
Fort=1,...,T

1. normalize the cost vector ¢; = ¢/(Z;c;)
2. fusion learner f(x,) — [0, 1]
3. fusion residue €, = If9(x,) - y,|

ng+n
Z.S T Ci€i
i=ng+1
ns+nT
2= =ng+1 Ci

4. target domain errer € =

5.setB,=€/(1 - €), p = 1/(1 +V2ImngT)
6. update the cost
¢ —c¢ - pY i=1,...,n¢
c;—>c¢; P i=ng+1,...,n5+07
Output: £ and a,=-log P, fort=1,...,T
Testing stage: fused score s(x;) = Z,_, 7 fO(x,)a,

With respect to training data recycling, a crucial feature of
TrAdaBoost is that the cost ¢, for data i in the target domain D,
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increases when the fusion residue is big so that the following
iterations will focus on more difficult data. On the other hand,
¢, for data i in the source domain D can decrease if the residue
is big, such as indicating data i in D does not fit into D..

In an example of a fusion learner, let the overall data and
their fusion residue be organized in x=[(x,, . . ., an+nT)T , 1]
and e=(e,, . . ., enSMT)T , respectively, where T is a (ng+n;)-
by-1 auxiliary one dimensional vector. With the costs orga-
nized in a diagonal matrix A(i, )=c,, linear, regularized least-
square fusion can be applied, and a weighted MMSE solution
can be solved for, such as a solution that minimizes mean-
squared fusion residue:

W* = argmin{e” - A -e + Alwil}, 0

where A controls regularization (e.g., use A=0.01), and
e=x-w-y. The MMSE solution can thus be given by

Wi=(xTAx+ M)~ 'x A, (8)

Also note that in the testing stage, fusion classifiers can be
combined from all iterations, such as can be different from
traditional binary-classification-based TriAdaBoost.

Several experiments were carried out on video event detec-
tion of 5 challenging video categories from the
TRECVID2011 dataset: attempting a board trick; feeding an
animal; landing a fish; wedding ceremony; and woodwork-
ing. Stacked learning was performed with M=4 base classi-
fiers, each of which estimates event probability based on a
different multimedia feature. For example, (1) motion is cap-
tured by a bag of words feature on 3D) histograms of oriented
gradients, and classified by an SVM with Histogram Inter-
section Kernel (HIK); (2) the relationship between events and
objects is captured using the Object Bank feature, computed
using the reference code, and the maximum response of each
detector across the clip’s frames is classified with an SVM
using HIK; (3) the relationship between events and their
environments is captured using the Gist feature, which is
computed on a random 20 frame subset of the video, and the
20 outputs of a per-frame linear SVM are averaged to give a
base classifier score; and (4) low-level audio information is
captured using Mel-Frequency Cepstral Coefficients
(MFCCs), computed using the HTK Speech Recognition
Toolkit2, and an SVM with HIK is trained using a bag of
words quantization of the MFCC features.

In these experiments, the training dataset contained 2062
videos, with around 100 positive labels per event category.
About 80% of the data was used for training the 4 base
classifiers (fixed), and subsets of the remaining 20% were
used for learning the meta-level classifier. The testing dataset
contained 4292 videos with on average 101 positive labels per
event category. Both the training and testing sets were imbal-
anced, with negative labels heavily outnumbering positive
labels. The overall performance of the ranking system is
evaluated using average precision (AP), defined as

AP= Ni > Prid @

P ietyt)

where N, is the number of positive labels, and Pr(i) is the
precision statistics based on top-ranked data with a cutoff at
the ith positive data. The AP statistics is equivalent to the
Area-Under-ROC-Curve (AUC) statistic or normalized Wil-
coxon-Mann-Whitney (WMW) ranking statistics. In an
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example, the performance of the system can be evaluated on
its best operating point based on F1 statistics, defined as

precision-recall (10)

Fl=2 ————.
precision + recall

A ratio r between the number of meta-training (held out)
and base-training (held in) clips can be provided. Base-train-
ing data can be bootstrapped (e.g., sampling with replace-
ment) as Dy, and a subset of the output score can be sampled
from meta-training data as D, thereby varying the ratio r
from about % down to about Y20. This scenario can be
repeated (e.g., 100 times), and the average AP and F1 perfor-
mance can be determined for all 5 events. In an example, a
regularized leastsquare fusion classifier can be used (e.g.,
Equation (8)), which has shown to yield to better perfor-
mances at meta-level than nonlinear SVM.

In an example, a multi-level classifier system can include
multiple base-level classifiers and at least one meta-level
fusion classifier. An output of the base-classifiers can be used
as aninput to the at least one meta-classifier. Training data can
be separated for base-level training and meta-level training,
because, in some cases, base-level classifiers can be “over-
fit,” that is, a base classifier having very good performance in
a training mode may not necessarily perform well on new or
novel test data. In this case, an output of a base classifier on
training data might be misleading if it were used to train the
meta-level classifier directly. In some cases, labeled or clas-
sified training data can be very valuable or scarce. If labeled
or classified training data were partitioned into two parts (one
for the base-level and one for the meta-level classifier) for
training, both of the base- and meta-level classifiers could
suffer since they would be trained only on half of the data.

Accordingly, training-data recycling can be used. This can
include using most of the labeled or classified data to train
base classifiers, and reserving only a relatively small portion
of the data for training meta-level classifiers. Meanwhile,
with the help of the meta-level training data (precluded from
the base-level training), the base-level training data can be
recycled and re-used at the meta-level.

In an example, a base-training score can be derived from a
base classifier output from base-training data. A meta-train-
ing score can be derived from a base classifier output from
new, or test data. A distribution of the base-training score can
be adjusted according to the meta-training score. Then, a
knowledge-transfer framework, such as transfer-adaptive
boost (triAdaboost), can be employed to re-use the informa-
tion from the base-training score at the meta level. The knowl-
edge-transfer framework works by iteratively adjust the
weighting of base training data, such as by decreasing an
importance of the base-training data that are more suspicious
to be over-fitting, or by keeping or increasing an importance
of'more valuable base-training data, such as data that provides
more consistent performance compared to meta-training
data.

In summary, a stacked learning framework can be
employed to re-use base-level training data for meta-level
learning. The problem can be addressed as a knowledge trans-
fer, and can include first applying a histogram to re-balancing
to the marginal distribution of source-domain features (e.g.,
base-classifier score output on held-in data) according to
target-domain features (e.g., score output on held-out data).
From there, an adaptation of the TriAdaBoost algorithm can
be used, such as with a weighted least-square fusion learner,
such as for training the meta-level score fusion.



US 9,147,129 B2

15

FIG. 8 is ablock diagram of a computer system, such as can
be configured to implement various classifier methods. In the
embodiment shown in FIG. 8, a hardware and operating envi-
ronment is provided that may be specifically programmed to
implement the methods and system described herein.

As shown in FIG. 8, one embodiment of the hardware and
operating environment includes a general purpose computing
device in the form of a computer 801 (e.g., a personal com-
puter, workstation, or server), including one or more process-
ing units 21 (e.g., processor circuits), a system memory 22,
and a system bus 23 that operatively couples various system
components including the system memory 22 to the process-
ing unit 21. There may be only one or there may be more than
one processing unit 21, such that the processor of computer
801 comprises a single central-processing unit (CPU), or a
plurality of processing units, commonly referred to as a mul-
tiprocessor or parallel-processor environment. In various
embodiments, computer 801 is a conventional computer, a
distributed computer, or any other type of computer.

The system bus 23 can be any of several types of bus
structures including a memory bus or memory controller, a
peripheral bus, and a local bus using any of a variety of bus
architectures. The system memory can also be referred to as
simply the memory, and, in some embodiments, includes
read-only memory (ROM) 24 and random-access memory
(RAM) 25. A basic input/output system (BIOS) program 26,
containing the basic routines that help to transfer information
between elements within the computer 801, such as during
start-up, may be stored in ROM 24. The computer 801 further
includes a hard disk drive 27 for reading from and writing to
a hard disk, not shown, a magnetic disk drive 28 for reading
from or writing to a removable magnetic disk 29, and an
optical disk drive 30 for reading from or writing to a remov-
able optical disk 31 such as aCD ROM or other optical media.

The hard disk drive 27, magnetic disk drive 28, and optical
disk drive 30 couple with a hard disk drive interface 32, a
magnetic disk drive interface 33, and an optical disk drive
interface 34, respectively. The drives and their associated
computer-readable media provide non volatile storage of
computer-readable instructions, data structures, program
modules and other data for the computer 801. It should be
appreciated by those skilled in the art that any type of com-
puter-readable media which can store data that is accessible
by a computer, such as magnetic cassettes, flash memory
cards, digital video disks, Bernoulli cartridges, random
access memories (RAMs), read only memories (ROMs),
redundant arrays of independent disks (e.g., RAID storage
devices) and the like, can be used in the exemplary operating
environment.

A plurality of program modules can be stored on the hard
disk, magnetic disk 29, optical disk 31, ROM 24, or RAM 25,
including an operating system 35, one or more application
programs 36, other program modules 37, and program data
38. Programming for implementing one or more processes or
method described herein may be resident on any one or num-
ber of these computer-readable media. A user may enter com-
mands and information into computer 801 through input
devices such as a keyboard 40 and pointing device 42. Other
input devices (not shown) can include a microphone, joystick,
game pad, satellite dish, scanner, or the like. These other input
devices are often connected to the processing unit 21 through
a serial port interface 46 that is coupled to the system bus 23,
but can be connected by other interfaces, such as a parallel
port, game port, or a universal serial bus (USB). A monitor 47
or other type of display device can also be connected to the
system bus 23 via an interface, such as a video adapter 48. The
monitor 47 can display a graphical user interface for the user.
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In addition to the monitor 47, computers typically include
other peripheral output devices (not shown), such as speakers
and printers.

The computer 801 may operate in a networked environ-
ment using logical connections to one or more remote com-
puters or servers, such as remote computer 49. These logical
connections are achieved by a communication device coupled
to or a part of the computer 801; the invention is not limited to
aparticular type of communications device. The remote com-
puter 49 can be another computer, a server, a router, a network
PC, a client, a peer device or other common network node,
and typically includes many or all of the elements described
above 1/O relative to the computer 801, although only a
memory storage device 50 has been illustrated. The logical
connections depicted in FIG. 8 include a local area network
(LAN) 51 and/or a wide area network (WAN) 52. Such net-
working environments are commonplace in office networks,
enterprise-wide computer networks, intranets and the inter-
net, which are all types of networks.

When used in a LAN-networking environment, the com-
puter 801 is connected to the LAN 51 through a network
interface or adapter 53, which is one type of communications
device. In some embodiments, when used in a WAN-net-
working environment, the computer 801 typically includes a
modem 54 (another type of communications device) or any
other type of communications device, e.g., a wireless trans-
ceiver, for establishing communications over the wide-area
network 52, such as the internet.

Although a few embodiments have been described in detail
above, other modifications are possible. For example, the
logic flows depicted in the figures do not require the particular
order shown, or sequential order, to achieve desirable results.
Other steps may be provided, or steps may be eliminated,
from the described flows, and other components may be
added to, or removed from, the described systems. Other
embodiments may be within the scope of the following
claims.

VARIOUS NOTES & EXAMPLES

Example 1 can include or use subject matter (such as an
apparatus, a method, a means for performing acts, or a device
readable medium including instructions that, when per-
formed by the device, can cause the device to perform acts),
such as can include or use a system, comprising a processor
circuit, including a first data input configured to receive prob-
ability estimates from two or more separate feature classifiers
over a collection of training items, those items having asso-
ciated ground truth category information. Example 1 can
include a processor-readable medium, including instructions
that, when performed by the processor, configure the system
to select a fusion model to adapt local statistics of the two or
more separate feature classifiers over the collection of train-
ing items, and fuse the probability estimates from the separate
feature classifiers according to the selected fusion model to
generate an output probability estimate for new items that do
not have associated ground truth information.

Example 2 can include, or can optionally be combined with
the subject matter of Example 1, to optionally include the
processor-readable medium, wherein the processor-readable
medium includes instructions that, when performed by the
processor, configure the system to fuse the probability esti-
mates from the separate feature classifiers using weights
assigned to each classifier.

Example 3 can include, or can optionally be combined with
the subject matter of Example 2, to optionally include the
processor-readable medium, wherein the processor-readable
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medium includes instructions that, when performed by the
processor, configure the system to use an objective function to
fuse the probability estimates from the separate feature clas-
sifiers, the objective function comprising a minimum mean
squared error fusion function with a non-negative constraint.

Example 4 can include, or can optionally be combined with
the subject matter of Example 2, to optionally include the
processor-readable medium, wherein the processor-readable
medium includes instructions that, when performed by the
processor, configure the system to use an objective function to
fuse the probability estimates from the separate feature clas-
sifiers, the objective function comprising a linear support
vector machine with a non-negative constraint.

Example 5 can include, or can optionally be combined with
the subject matter of one or any combination of Examples 1
through 4 to optionally include the first data input configured
to receive probability estimates from the two or more separate
feature classifiers over a collection of training items, wherein
the collection of training items comprises video clips or still
images that can be categorized by an activity depicted in the
video clips or still images.

Example 6 can include, or can optionally be combined with
the subject matter of one or any combination of Examples 1
through 5 to optionally include the processor-readable
medium, wherein the processor-readable medium includes
instructions that, when performed by the processor, configure
the system to compare the generated output probability esti-
mate to a threshold to identify a category for new items that do
not have associated ground truth information.

Example 7 can include or use subject matter (such as an
apparatus, a method, a means for performing acts, or a device
readable medium including instructions that, when per-
formed by the device, can cause the device to perform acts),
such as can include or use a method, comprising receiving
probability estimates from two or more separate feature clas-
sifiers over a collection of training items, those items having
associated ground truth category information, selecting a
fusion model to adapt to the local statistics of the separate
feature classifiers over the training data, and fusing the prob-
ability estimates from the separate feature classifiers accord-
ing to the model to generate an output probability estimate for
new items without associated ground truth information.

Example 8 can include, or can optionally be combined with
the subject matter of Example 7, to optionally include the
fusion model, wherein the fusion model comprises weights
assigned to each classifier.

Example 9 can include, or can optionally be combined with
the subject matter of Example 8, to optionally include an
objective function for fusing the local statistics that comprises
a minimum mean squared error fusion with non-negative
constraint.

Example 10 can include, or can optionally be combined
with the subject matter of Example 8, to optionally include an
objective function for fusing the local statistics that comprises
a linear support vector machine with non-negative constraint.

Example 11 can include, or can optionally be combined
with the subject matter of one or any combination of
Examples 7 through 10 to optionally include the items,
wherein the items are video clips and the categories denote
activities depicted by the video clip.

Example 12 can include, or can optionally be combined
with the subject matter of one or any combination of
Examples 7 through 11 to optionally include fusing the prob-
ability estimates to generate an output probability estimate,
including using the output probability estimate to identify a
category for new items that do not have associated ground
truth information.
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Example 13 can include or use subject matter (such as an
apparatus, a method, a means for performing acts, or a device
readable medium including instructions that, when per-
formed by the device, can cause the device to perform acts),
such as can include oruse a computer-readable storage device
having instructions for causing a computer to implement a
method, the method comprising receiving training data that
includes items with associated ground truth information,
using a first portion of the training data to generate at least two
base-level classifiers, and using a second portion of the
labeled training data to generate a meta-level classifier,
wherein the first and second portions of the training data at
least partially overlap.

Example 14 can include, or can optionally be combined
with the subject matter of Example 13, to optionally include
the method, further comprising identifying a base training
score distribution using the base-level classifiers, identifying
a meta training score distribution using the base-level classi-
fiers, adjusting the base training score distribution using
information about the meta training score distribution, and
generating a meta-level classifier using the adjusted base
training score distribution and the meta training score distri-
bution.

Example 15 can include, or can optionally be combined
with the subject matter of Example 14, to optionally include
the method, wherein the identifying the base training score
distribution using the base-level classifiers includes identify-
ing the base training score distribution by evaluating the
base-level classifiers on items in the first portion of the train-
ing data, and wherein the identifying the meta training score
distribution using the base-level classifiers includes identify-
ing the meta training score distribution by evaluating the
base-level classifiers on items in a non-overlapping portion of
the second portion of the training data.

Example 16 can include, or can optionally be combined
with the subject matter of Example 15, to optionally include
the method, wherein adjusting the base training score distri-
bution includes iteratively adjusting a weighting of the base
training score distribution.

Example 17 can include, or can optionally be combined
with the subject matter of one or any combination of
Examples 13 through 16 to optionally include the method,
wherein adjusting the base training score distribution
includes using histogram equalization to adjust the base train-
ing score distribution using the meta training score distribu-
tion.

Example 18 can include, or can optionally be combined
with the subject matter of Example 17, to optionally include
the method, wherein generating the meta-level classifier
includes fusing an output of the at least two base-level clas-
sifiers.

Example 19 can include, or can optionally be combined
with the subject matter of one or any combination of
Examples 13 through 18 to optionally include the method,
wherein receiving training data that includes items with asso-
ciated ground truth information includes receiving video clip
data and/or image data with associated ground truth informa-
tion.

Example 20 can include, or can optionally be combined
with the subject matter of Example 19, to optionally include
the method, wherein using the first portion of the training data
to generate the at least two base-level classifiers includes
using the data to generate a classifier configured to distin-
guish an activity depicted in the video clip data and/or image
data.

Example 21 can include or use subject matter (such as an
apparatus, a method, a means for performing acts, or a device
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readable medium including instructions that, when per-
formed by the device, can cause the device to perform acts),
such as can include or use a method comprising receiving
scores from two or more separate feature classifiers over a
collection of training items, those items having associated
ground truth category information, partitioning a score space,
applying linear fusion to local clusters of the training items in
the partitioned score space, and iteratively optimizing the
partition and fused local clusters.

Example 22 can include or use subject matter (such as an
apparatus, a method, a means for performing acts, or a device
readable medium including instructions that, when per-
formed by the device, can cause the device to perform acts),
such as can include or use a method comprising generating an
expert forest comprising at least two different partitioned
expert pairs, wherein each of the expert pairs includes a linear
binary partition that is configured to divide items into local
clusters, testing items without associated ground truth infor-
mation by evaluating the expert forest, receiving base classi-
fier scores, using the received base classifier scores to identify
relevant local experts, and fusing the base classifier scores
into a scalar output using the identified relevant local experts.

Example 23 can include, or can optionally be combined
with the subject matter of Example 22, to optionally include
fusing the base classifier scores into a scalar output, including
uniquely weighting each of the base classifier scores.
Example 23 can include, or can optionally be combined with
the subject matter of one or any combination of Examples 21
or 22 to optionally include uniquely weighting each of the
base classifier scores, including applying a non-negative con-
straint on all weights.

Example 24 can include, or can optionally be combined
with the subject matter of one or any combination of
Examples 22 or 23 to optionally include receiving the base
classifier scores corresponding to each of the at least two
different partitioned expert pairs, including identifying a
maximum likelihood that a test item corresponds to a particu-
lar local cluster.

Example 25 can include, or can optionally be combined
with the subject matter of one or any combination of
Examples 22 through 24 to optionally include identifying the
expert forest, in a learning mode, by applying k-means clus-
tering to samples corresponding to each of the local clusters to
generate a pair of clusters for each tree in the forest, using the
clustered samples to identify a location of the linear binary
partition.

Example 26 can include, or can optionally be combined
with the subject matter of Example 25, to optionally include
using the clustered samples to identify a location of the linear
binary partition, including determining a one-dimensional
projection vector that separates a pair of clusters correspond-
ing to one of the unique classifications, and identifying a
threshold along the projection vector.

Example 27 can include, or can optionally be combined
with the subject matter of one or any combination of
Examples 22 through 26 to optionally include testing items
without associated ground truth information, including test-
ing video clips or images without associated ground truth
information.

Each of these non-limiting examples can stand on its own,
or can be combined in various permutations or combinations
with one or more of the other examples.

In this document, the terms “a” or “an” are used, as is
common in patent documents, to include one or more than
one, independent of any other instances or usages of “at least
one” or “one or more.” In this document, the term “or” is used
to refer to a nonexclusive or, such that “A or B” includes “A
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but not B,” “B but not A,” and “A and B,” unless otherwise
indicated. In this document, the terms “including” and “in
which” are used as the plain-English equivalents of the
respective terms “comprising” and “wherein.” Also, in the
following claims, the terms “including” and “comprising” are
open-ended, that is, a system, device, article, composition,
formulation, or process that includes elements in addition to
those listed after such a term in a claim are still deemed to fall
within the scope of that claim. Moreover, in the following
claims, the terms “first,” “second,” and “third,” etc. are used
merely as labels, and are not intended to impose numerical
requirements on their objects.

Method examples described herein can be machine or
computer-implemented at least in part. Some examples can
include a computer-readable medium or machine-readable
medium encoded with instructions operable to configure an
electronic device to perform methods as described in the
above examples. An implementation of such methods can
include code, such as microcode, assembly language code, a
higher-level language code, or the like. Such code can include
computer readable instructions for performing various meth-
ods. The code may form portions of computer program prod-
ucts. Further, in an example, the code can be tangibly stored
on one or more volatile, non-transitory, or non-volatile tan-
gible computer-readable media, such as during execution or
at other times. Examples of these tangible computer-readable
media can include, but are not limited to, hard disks, remov-
able magnetic disks, removable optical disks (e.g., compact
disks and digital video disks), magnetic cassettes, memory
cards or sticks, random access memories (RAMs), read only
memories (ROMs), and the like.

The above description is intended to be illustrative, and not
restrictive. For example, the above-described examples (or
one or more aspects thereof) may be used in combination with
each other. Other embodiments can be used, such as by one of
ordinary skill in the art upon reviewing the above description.
The Abstract is provided to comply with 37 C.E.R. §1.72(b),
to allow the reader to quickly ascertain the nature of the
technical disclosure. It is submitted with the understanding
that it will not be used to interpret or limit the scope or
meaning of the claims. Also, in the above Detailed Descrip-
tion, various features may be grouped together to streamline
the disclosure. This should not be interpreted as intending that
an unclaimed disclosed feature is essential to any claim.
Rather, inventive subject matter may lie in less than all fea-
tures of a particular disclosed embodiment. Thus, the follow-
ing claims are hereby incorporated into the Detailed Descrip-
tion as examples or embodiments, with each claim standing
on its own as a separate embodiment, and it is contemplated
that such embodiments can be combined with each other in
various combinations or permutations. The scope of the
invention should be determined with reference to the
appended claims, along with the full scope of equivalents to
which such claims are entitled.

The claimed invention is:

1. A system, comprising:

a processor circuit, including:

a first data input configured to receive probability esti-
mates from two or more separate feature classifiers
over a collection of training items, those items having
associated ground truth category information; and

a processor-readable medium, including instructions that,

when performed by the processor, configure the system

to:

select a fusion model to adapt local statistics of the two
or more separate feature classifiers over the collection
of training items;



US 9,147,129 B2

21

generate K partitions on each separate feature classifier
to form K2 pairs of associations;

determine a maximum likelihood estimate of a pair of
the K* pairs being the correct classifier including
modelling the likelihood using a localized expert for-
est and using a linear model for the localized expert
forest; and

fuse the maximum likelihood estimates from the sepa-
rate feature classifiers according to the selected fusion
model to generate an output probability estimate for
new items that do not have associated ground truth
information.

2. The system of claim 1, wherein the processor-readable
medium includes instructions that, when performed by the
processor, configure the system to fuse the probability esti-
mates from the separate feature classifiers using weights
assigned to each classifier.

3. The system of claim 2, wherein the processor-readable
medium includes instructions that, when performed by the
processor, configure the system to use an objective function to
fuse the probability estimates from the separate feature clas-
sifiers, the objective function comprising a minimum mean
squared error fusion function with a non-negative constraint.

4. The system of claim 2, wherein the processor-readable
medium includes instructions that, when performed by the
processor, configure the system to use an objective function to
fuse the probability estimates from the separate feature clas-
sifiers, the objective function comprising a linear support
vector machine with a non-negative constraint.

5. The system of claim 1, wherein the first data input is
configured to receive probability estimates from the two or
more separate feature classifiers over a collection of training
items, wherein the collection of training items comprises
video clips or still images that can be categorized by an
activity depicted in the video clips or still images.

6. The system of claim 1, wherein the processor-readable
medium includes instructions that, when performed by the
processor, configure the system to compare the generated
output probability estimate to a threshold to identify a cat-
egory for new items that do not have associated ground truth
information.

7. The system of claim 1, further comprising instructions
that, when performed by the processor, configure the system
to select K associations of the K? associations with the highest
determined maximum likelihood scores.

8. The system of claim 7, further comprising instructions
that, when performed by the processor, configure the system
to determine a cluster center for each of the K selected asso-
ciations.

9. The system of claim 8, further comprising instructions
that, when performed by the processor, configure the system
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to perform linear discriminant analysis to determine a one
dimensional projection vector that separates pairs of cluster
centers.

10. The system of claim 9, wherein instructions for deter-
mining a one dimensional projection vector that separates a
pair of cluster centers, include instructions that, when per-
formed by the processor, configure the system to project the
determined cluster centers onto a one dimensional axis cor-
responding to the one dimensional projection vector.

11. The system of claim 10, wherein instructions for deter-
mining a one dimensional projection vector that separates a
pair of cluster centers include instructions that, when per-
formed by the processor, configure the system to partition the
one dimensional axis into partitions based on a specified
threshold.

12. A method, comprising:

receiving probability estimates from two or more separate

feature classifiers over a collection of training items,
those items having associated ground truth category
information;

selecting a fusion model to adapt to the local statistics of

the separate feature classifiers over the training data;
generating K partitions on each separate feature classifier
to form K2 pairs of associations;

determining a maximum likelihood estimate of a pair of the

K? pairs being the correct classifier including modelling
the likelihood using a localized expert forest and using a
linear model for the localized expert forest; and

fusing the maximum likelihood estimates from the sepa-

rate feature classifiers according to the model to gener-
ate an output probability estimate for new items without
associated ground truth information.

13. The method of claim 12 wherein the fusion model
comprises weights assigned to each classifier.

14. The method of claim 13 wherein an objective function
for fusing the local statistics comprises a minimum mean
squared error fusion with non-negative constraint.

15. The method of claim 13 wherein an objective function
for fusing the local statistics comprises a linear support vector
machine with non-negative constraint.

16. The method of claim 12, wherein the items are video
clips and the categories denote activities depicted by the
video clip.

17. The method of claim 12, wherein fusing the probability
estimates to generate an output probability estimate includes
using the output probability estimate to identify a category for
new items that do not have associated ground truth informa-
tion.



